
Implementation of Viterbi Decoder for
Convolutional Code in HDL

Nilesh G. Nirmal, Gajanan U.Patil, Prafulla.P.Chaudhari, Mandar.M.Kulkarni

Department of Electronics & Communication Engineering
SSGBCOE&T, Bhusawal

Bhusawal, India

Abstract—Convolutional encoding and decoding (Viterbi
decoding) is a powerful method for forward error detection &
correction. It has been widely deployed in many communication
systems to improve the limited capacity and code rate of the
communication channels. The Viterbi algorithm, which is the
most extensively employed decoding algorithm for convolutional
codes. In this paper, we present a Simulation soft core
implementation of Viterbi Decoder with a constraint length of
three and a code rate of 2/3.

Keywords-component; Convolutional codes, Viterbi Algorithm,
Viterbi decoder, Phase-Shift Key, trellis, Path memory,
Simulation.

I. INTRODUCTION

This section describes an ASIC design for a Viterbi
decoder using Verilog. Viterbi encoding is widely used for
satellite and other noisy communications channels. There are
two important components of a channel using Viterbi
encoding: the Viterbi encoder (at the transmitter) and the
Viterbi decoder (at the receiver). A Viterbi encoder includes
extra information in the transmitted signal to reduce the
probability of errors in the received signal that may be
corrupted by noise.

We shall describe an encoder in which every two bits of a
data stream are encoded into three bits for transmission. The
ratio of input to output information in an encoder is the rate
of the encoder; this is a rate 2/3 encoder. The following
equations relate the three encoder output bits (Yn

2 , Yn
1 , and

Yn
0) to the two encoder input bits (Xn

2 and Xn
1) at a time nT:

Yn
2 = Xn

2
Yn

1 = Xn
1 xor Xn-2

1
Yn

0 = Xn-1
1

We can write the input bits as a single number. Thus, for
example, if Xn

2 = 1 and Xn
2 = 0 , we can write Xn = 2 .

Figure.1 shows a state machine with two memory elements
for the two last input values for Xn

1 : Xn-1
1 and Xn-2

1 is shown.
These two state variables define four states: {Xn-1

1, Xn-2
1 } ,

with S0 = { 0, 0}, S1 = {1, 0}, S2 = {0, 1}, and S3 = {1, 1}.
The 3-bit output Yn is a function of the state and current 2-bit
input Xn. The following theory describes the rate 2/3 encoder.
This model uses two D flip-flops as the state register. When
reset (using active-high input signal res) the encoder starts in
state S0.

II. SYSTEM IMPLEMENTATION

A. Viterbi Encoder

This encoder has Xn
2 (msb) and Xn

1 form the 2-bit input
message, XN. Example: if Xn

2=1, Xn
1=0, then Xn =2. Yn

2
(msb), Yn

1, and Yn
0 form the 3-bit encoded signal, Yn (for a

total constellation of 8 PSK signals that will be transmitted).
The encoder uses a state machine with four states to generate
the 3-bit output, Yn, from the 2-bit input, Xn. Example: the
repeated input sequence Xn = (Xn

2, Xn
1) = 0, 1, 2, 3 produces

the repeated output sequence Yn = (Yn
2, Yn

1, Yn
0) = 1, 0, 5, 4.

The first four rows of Table. I shows the four different
transitions that can be made from state S0 . For example, if
we reset the encoder and the input is Xn = 3 (Xn

2 = 1 and Xn
1

= 1), then the output will be Yn = 6 (Yn
2 = 1 , Yn

1 = 1 , Yn
0 =

0) and the next state will be S1 .

Figure 1. A state diagram for a rate 2/3 Viterbi encoder. The inputs and
outputs are shown in binary as Xn

2 Xn
1 / Yn

2 Yn
1 Yn

0, and in decimal as Xn/
Yn.

TABLE I. STATE TABLES FOR THE RATE 2/3 VITERBI ENCODER

Present
state

Inputs

State
variables

Outputs Next
state Yn

2 Yn
1 Yn

0

Xn
2 Xn

1
Xn-

1
1

Xn-

2
1

Xn
2

= Xn
1

xor Xn-

2
1

= Xn-

1
1

{Xn-1
1,

Xn-2
1}

S0 0 0 0 0 0 0 0 00 S0
S0 0 1 0 0 0 1 0 10 S1
S0 1 0 0 0 1 0 0 00 S0
S0 1 1 0 0 1 1 0 10 S1
S1 0 0 1 0 0 0 1 01 S2
S1 0 1 1 0 0 1 1 11 S3
S1 1 0 1 0 1 0 1 01 S2
S1 1 1 1 0 1 1 1 11 S3
S2 0 0 0 1 0 1 0 00 S0
S2 0 1 0 1 0 0 0 10 S1
S2 1 0 0 1 1 1 0 00 S0
S2 1 1 0 1 1 0 0 10 S1
S3 0 0 1 1 0 1 1 01 S2
S3 0 1 1 1 0 0 1 11 S3
S3 1 0 1 1 1 1 1 01 S2
S3 1 1 1 1 1 0 1 11 S3

Nilesh G. Nirmal et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (5) , 2011, 2137-2140

2137

As an example, the repeated encoder input sequence Xn
= 0, 1, 2, 3, ... produces the encoder output sequence Yn = 1,
0, 5, 4, ... repeated. Table.II shows the state transitions for
this sequence, including the initialization steps.

TABLE II. A SEQUENCE OF TRANSMITTED SIGNALS FOR THE RATE
2/3 VITERBI ENCODER

Inputs
State

variables
Outputs Present

state
Next
state

Xn
2 Xn

1 Xn-1
1 Xn-2

1 Yn
2 Yn

1 Yn
0

1 1 x x 1 x x S? S?
1 1 0 0 1 1 0 S0 S1
0 0 1 0 0 0 1 S1 S2
0 1 0 1 0 0 0 S2 S1
1 0 1 0 1 0 1 S1 S2
1 1 0 1 1 0 0 S2 S1
0 0 1 0 0 0 1 S1 S2
0 1 0 1 0 0 0 S2 S1
1 0 1 0 1 0 1 S1 S2
1 1 0 1 1 0 0 S2 S1
0 0 1 0 0 0 1 S1 S2
0 1 0 1 0 0 0 S2 S1

Figure.2. The Signal Constellation for An 8 PSK (Phase-Shift Keyed) Code.

Next we transmit the eight possible encoder outputs (Yn
= 0-7) as signals over our noisy communications channel
(perhaps a microwave signal to a satellite) using the signal
constellation shown in Figure. Typically this is done using
phase-shift keying (PSK) with each signal position
corresponding to a different phase shift in the transmitted
carrier signal.

B. The Received Signal

 The noisy signal enters the receiver. It is now our task to
discover which of the eight possible signals were transmitted
at each time step. First we calculate the distance of each

received signal from each of the known eight positions in the
signal constellation. Table.3 shows the distances between
signals in the 8PSK constellation. We are going to assume
that there is no noise in the channel to illustrate the operation
of the Viterbi decoder, so that the distances in Table.III
represent the possible distance measures of our received
signal from the 8PSK signals.
 The distances, X, in the first column of Table.III are the
geometric or algebraic distances. We measure the Euclidean
distance, E = X2 shown as B (the binary quantized value of E)
in Table.3. The rounding errors that result from conversion to
fixed-width binary are quantization errors and are important
in any practical implementation of the Viterbi decoder. The
effect of the quantization error is to add a form of noise to the
received signal.

The viterbi_distances module models the receiver
section that digitizes the noisy analog received signal and
computes the binary distance measures. Eight binary-distance
measures, in0-in7, are generated each time a signal is
received. Since each of the distance measures is 3 bits wide,
there are a total of 24 bits that form the digital inputs to the
Viterbi decoder.

C. Module viterbi_distances

 This module simulates the front end of a receiver.
Normally the received analog signal (with noise) is converted
into a series of distance measures from the known eight
possible transmitted PSK signals: s0,...,s7. We are not
simulating the analog part or noise in this version, so we just
take the digitally encoded 3-bit signal, Y, from the encoder
and convert it directly to the distance measures. d[N] is the
distance from signal = N to signal = 0 d[N] =
(2*sin(N*PI/8))**2 in 3-bit binary (on the scale 2=100)
Example: d[3] = 1.85**2 = 3.41 = 110 in N is the distance
from signal = N to encoder signal. Example: in3 is the
distance from signal = 3 to encoder signal. d[N] is the
distance from signal = N to encoder signal = 0. If encoder
signal = J, shift the distances by 8-J positions. Example: if
signal = 2, in0 is d[6], in1 is D[7], in2 is D[0], etc.
As an example, Table IV shows the distance measures for the
transmitted encoder output sequence Yn = 1, 0, 5, 4, ...
(repeated) corresponding to an encoder input of Xn = 0, 1, 2,
3, ... (repeated).

TABLE III. REPRESENTATION OF THE POSSIBLE DISTANCE MEASURES OF OUR RECEIVED SIGNAL FROM THE 8PSK SIGNALS

Signal
Algebraic

distance from
signal 0

X = Distance
from signal 0

Euclidean
distance
E = X2

B = binary quantized
value of E

D = decimal
value of B

Quantization
error

Q = D - 1.75 E
0 2 sin (0 π / 8) 0.00 0.00 000 0 0
1 2 sin (1 π / 8) 0.77 0.59 001 1 -0.0325
2 2 sin (2 π / 8) 1.41 2.00 100 4 0.5
3 2 sin (3 π / 8) 1.85 3.41 110 6 0.0325
4 2 sin (4 π / 8) 2.00 4.00 111 7 0
5 2 sin (5 π / 8) 1.85 3.41 110 6 0.0325
6 2 sin (6 π / 8) 1.41 2.00 100 4 0.5
7 2 sin (7 π / 8) 0.77 0.59 001 1 -0.0325

Nilesh G. Nirmal et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (5) , 2011, 2137-2140

2138

TABLE IV. RECEIVER DISTANCE MEASURESFOR AN EXAMPLE TRANSMISSION SEQUENCE

Input Xn Output Yn Present state Next state in0 in1 in2 in3 in4 in5 in6 in7
3 x S? S? x x x x x x x x
3 6 S0 S1 4 6 7 6 4 1 0 1
0 1 S1 S2 1 0 1 4 6 7 6 4
1 0 S2 S1 0 1 4 6 7 6 4 1
2 5 S1 S2 6 7 6 4 1 0 1 4
3 4 S2 S1 7 6 4 1 0 1 4 6
0 1 S1 S2 1 0 1 4 6 7 6 4
1 0 S2 S1 0 1 4 6 7 6 4 1
2 5 S1 S2 6 7 6 4 1 0 1 4
3 4 S2 S1 7 6 4 1 0 1 4 6
0 1 S1 S2 1 0 1 4 6 7 6 4
1 0 S2 S1 0 1 4 6 7 6 4 1

III. TESTING THE SYSTEM

Here is a testbench for the entire system: encoder,
receiver front end, and decoder:

Figure.3. Block diagram of the entire system

A. Module viterbi_test

 This is the top-level module, viterbi_test, that models
the communications link. It contains three modules:
viterbi_encode, viterbi_distances, and viterbi. There is no
analog and no noise in this version. The 2-bit message, X, is
encoded to a 3-bit signal, Y. In this module the message X is
generated using a simple counter. The digital 3-bit signal Y is
transmitted, received with noise as an analog signal (not
modeled here), and converted to a set of eight 3-bit distance
measures, in0, ..., in7. The distance measures form the input
to the Viterbi decoder that reconstructs the transmitted signal
Y, with an error signal if the measures are inconsistent(CDD
= counter input, digital transmission, digital reception). The
Viterbi decoder takes the distance measures and calculates
the most likely transmitted signal. It does this by keeping a
running history of the previously received signals in a path
memory. The path-memory length of this decoder is 12. By
keeping a history of possible sequences and using the
knowledge that the signals were generated by a state
machine, it is possible to select the most likely sequences.

Figure.4. Simulator output from the testbench (displayed using Xilinx ISE).

 The system input or message, X[1:0] , is driven by a
counter that repeats the sequence 0, 1, 2, 3, ... incrementing
by 1 at each positive clock edge (with a delay of one time
unit), starting with X equal to 3 at t = 0. The active-high reset
signal, Res, is asserted. The encoder output, Y [2:0], changes
after the first positive clock edge following the deassertion of
the reset. The encoder output sequence is 2, 5, 4, 1, 0…. and
then the sequence 5, 4, 1, 0... repeats. This encoder output
sequence is then imagined to be transmitted and received.
The receiver module calculates the distance measures and
passes them to the decoder. The transmitted sequence appears
at the output, out [2:0], with 2, 5, 4, 1, 0... exactly the same as
the encoder output.

IV. INTERNAL BLOCKS OF DECODER

A. Verilog Decoder Model

The Viterbi decoder model presented in this section is
written for simulation. The Viterbi decoder makes extensive
use of vector D flip-flops (registers).

B. A D flip-flop module

We use this model by defining a parameter that
specifies the bus width as follows:

dff #(3) subout0(in0, sub0, clk, reset);
 The code is not flexible, because bit widths are fixed

rather than using parameters. A model with parameters for
rate, signal constellation, distance measure resolution, and
path memory length is considerably more complex.
 Verilog code for a Viterbi decoder. The decoder
assumes a rate 2/3 encoder, 8 PSK modulation, and trellis
coding. The viterbi module contains eight submodules:
subset_decode, metric, compute_metric, compare_select,
reduce, pathin, path_memory, and output_decision.
 The decoder accepts eight 3-bit measures of ||r-si||**2
and, after an initial delay of thirteen clock cycles, the output
is the best estimate of the signal transmitted. The distance
measures are the Euclidean distances between the received
signal r (with noise) and each of the (in this case eight)
possible transmitted signals s0 to s7.
 This is the top level of the Viterbi decoder. The eight
input signals {in0,...,in7} represent the distance measures, ||r-

Nilesh G. Nirmal et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (5) , 2011, 2137-2140

2139

si||**2. The other input signals are clk and reset. The output
signals are out and error.

C. Module subset_decode

 This module chooses the signal corresponding to the
smallest of each set {||r-s0||**2,||r-s4||**2}, {||r-s1||**2, ||r-
s5||**2}, {||r-s2||**2,||r-s6||**2}, {||r-s3||**2,||r-s7||**2}.
Therefore there are eight input signals and four output signals
for the distance measures. The signals sout0, sout3 are used
to control the path memory. The statement dff #(3)
instantiates a vector array of 3 D flip-flops.

D. Module compute_metric

 This module computes the sum of path memory and the
distance for each path entering a state of the trellis. For the
four states, there are two paths entering it; therefore eight
sums are computed in this module. The path metrics and
output sums are 5 bits wide. The output sum is bounded and
should never be greater than 5 bits for a valid input signal.
The overflow from the sum is the error output and indicates
an invalid input signal.

E. Module compare_select

 This module compares the summations from the
compute_metric module and selects the metric and path with
the lowest value. The output of this module is saved as the
new path metric for each state. The ACS output signals are
used to control the path memory of the decoder.

F. Module path

 This is the basic unit for the path memory of the Viterbi
decoder. It consists of four 3-bit D flip-flops in parallel.
There is a 2:1 mux at each D flip-flop input. The statement
dff #(12) instantiates a vector array of 12 flip-flops.

G. Module path_memory

 This module consists of an array of memory elements
(D flip-flops) that store and shift the path memory as new
signals are added to the four paths (or four most likely
sequences of signals). These module instantiates 11 instances
of the path module.

H. Module pathin

 This module determines the input signal to the path for
each of the four paths. Control signals from the subset

decoder and compare select modules are used to store the
correct signal. The statement dff #(12) instantiates a vector
array of 12 flip-flops.

I. Module metric

 The registers created in this module (using D flip-flops)
store the four path metrics. Each register is 5 bits wide. The
statement dff #(5) instantiates a vector array of 5 flip-flops.

J. Module output_decision

 This module decides the output signal based on the path
that corresponds to the smallest metric. The control signal
comes from the reduce module.

K. Module reduce

 This module reduces the metrics after the addition and
compare operations. This algorithm selects the smallest
metric and subtracts it from all the other metrics.

V. CONCLUSION

 In this paper, a Viterbi algorithm based on the strongly
connected trellis decoding of binary convolutional codes has
been presented. The use of error-correcting codes has proven
to be an effective way to overcome data corruption in digital
communication channels. The Viterbi decoder is modeled
using Verilog, and Simulated by Xilinx ISE .We can
implement a higher performance Viterbi decoder with such
an algorithm. So in the future, with this algorithm with larger
code rates we can get better results.

 REFERENCES
[1] Ranjan Bose, “Information theory coding and Cryptography”,

McGraw-Hill.

[2] J.G. Proakis. ”Digital Communications.” McGraw Hill, second edition,
1989.

[3] Robert G. Gallager, “Information Theory & Reliable
Communication” John Wiley & Sons.

[4] Weng Fook Lee, “Verilog Coding for Logic Synthesis”, A John Wiley
& Sons, Inc., Publication.

[5] Samir Palnitkar, “Verilog HDL: A Guide to Digital Design And
Synthesis, Second Edition”, Prentice Hall PTR.

[6] Volker Kuhn, “Wireless Communications over MIMO Channels-
Applications to CDMA and Multiple Antenna Systems” John Wiley &
Sons Ltd.

Nilesh G. Nirmal et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (5) , 2011, 2137-2140

2140

