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Abstract—Convolutional encoding and decoding (Viterbi 
decoding) is a powerful method for forward error detection & 
correction. It has been widely deployed in many communication 
systems to improve the limited capacity and code rate of the 
communication channels. The Viterbi algorithm, which is the 
most extensively employed decoding algorithm for convolutional 
codes. In this paper, we present a Simulation soft core 
implementation of Viterbi Decoder with a constraint length of 
three and a code rate of 2/3.  
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I. INTRODUCTION 

This section describes an ASIC design for a Viterbi 
decoder using Verilog. Viterbi encoding is widely used for 
satellite and other noisy communications channels. There are 
two important components of a channel using Viterbi 
encoding: the Viterbi encoder (at the transmitter) and the 
Viterbi decoder (at the receiver). A Viterbi encoder includes 
extra information in the transmitted signal to reduce the 
probability of errors in the received signal that may be 
corrupted by noise. 

We shall describe an encoder in which every two bits of a 
data stream are encoded into three bits for transmission. The 
ratio of input to output information in an encoder is the rate 
of the encoder; this is a rate 2/3 encoder. The following 
equations relate the three encoder output bits (Yn

2 , Yn
1 , and 

Yn
0 ) to the two encoder input bits (Xn

2 and Xn
1 ) at a time nT: 

Yn
2 = Xn

2 
Yn

1 = Xn
1 xor Xn-2

1 
Yn

0 = Xn-1
1 

We can write the input bits as a single number. Thus, for 
example, if Xn

2 = 1 and Xn
2 = 0 , we can write Xn = 2 . 

Figure.1 shows a state machine with two memory elements 
for the two last input values for Xn

1 : Xn-1
1 and Xn-2

1 is shown. 
These two state variables define four states: {Xn-1

1, Xn-2
1 } , 

with S0 = { 0, 0}, S1 = {1, 0}, S2 = {0, 1}, and S3 = {1, 1}. 
The 3-bit output Yn is a function of the state and current 2-bit 
input Xn. The following theory describes the rate 2/3 encoder. 
This model uses two D flip-flops as the state register. When 
reset (using active-high input signal res) the encoder starts in 
state S0. 
 

II. SYSTEM IMPLEMENTATION 

A. Viterbi Encoder 

This encoder has Xn
2 (msb) and Xn

1 form the 2-bit input 
message, XN. Example: if Xn

2=1, Xn
1=0, then Xn =2. Yn

2 
(msb), Yn

1, and Yn
0 form the 3-bit encoded signal, Yn (for a 

total constellation of 8 PSK signals that will be transmitted). 
The encoder uses a state machine with four states to generate 
the 3-bit output, Yn, from the 2-bit input, Xn. Example: the 
repeated input sequence Xn = (Xn

2, Xn
1) = 0, 1, 2, 3 produces 

the repeated output sequence Yn = (Yn
2, Yn

1, Yn
0) = 1, 0, 5, 4.  

The first four rows of Table. I shows the four different 
transitions that can be made from state S0 . For example, if 
we reset the encoder and the input is Xn = 3 (Xn

2 = 1 and Xn
1 

= 1), then the output will be Yn = 6  (Yn
2 = 1 ,  Yn

1 = 1 , Yn
0 = 

0 ) and the next state will be S1 . 

 
Figure 1.  A state diagram for a rate 2/3 Viterbi encoder. The inputs and 
outputs are shown in binary as Xn

2 Xn
1 / Yn

2 Yn
1 Yn

0, and in decimal as Xn/ 
Yn. 
 

TABLE I.  STATE TABLES FOR THE RATE 2/3 VITERBI ENCODER 

Present 
state 

Inputs 
 

State 
variables 

Outputs Next 
state Yn

2   Yn
1   Yn

0   

Xn
2 Xn

1 
Xn-

1
1   

Xn-

2
1   

Xn
2   

= Xn
1 

xor Xn-

2
1   

= Xn-

1
1   

{Xn-1
1, 

Xn-2
1}   

S0 0 0 0 0 0 0 0 00 S0 
S0 0 1 0 0 0 1 0 10 S1 
S0 1 0 0 0 1 0 0 00 S0 
S0 1 1 0 0 1 1 0 10 S1 
S1 0 0 1 0 0 0 1 01 S2 
S1 0 1 1 0 0 1 1 11 S3 
S1 1 0 1 0 1 0 1 01 S2 
S1 1 1 1 0 1 1 1 11 S3 
S2 0 0 0 1 0 1 0 00 S0 
S2 0 1 0 1 0 0 0 10 S1 
S2 1 0 0 1 1 1 0 00 S0 
S2 1 1 0 1 1 0 0 10 S1 
S3 0 0 1 1 0 1 1 01 S2 
S3 0 1 1 1 0 0 1 11 S3 
S3 1 0 1 1 1 1 1 01 S2 
S3 1 1 1 1 1 0 1 11 S3 
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As an example, the repeated encoder input sequence Xn 
= 0, 1, 2, 3, ... produces the encoder output sequence Yn = 1, 
0, 5, 4, ... repeated. Table.II shows the state transitions for 
this sequence, including the initialization steps. 

 

TABLE II.  A SEQUENCE OF TRANSMITTED SIGNALS FOR THE RATE  
2/3 VITERBI ENCODER 

Inputs 
State 

variables 
Outputs Present 

state 
Next 
state 

Xn
2 Xn

1 Xn-1
1 Xn-2

1 Yn
2 Yn

1 Yn
0 

1 1 x x 1 x x S? S? 
1 1 0 0 1 1 0 S0 S1 
0 0 1 0 0 0 1 S1 S2 
0 1 0 1 0 0 0 S2 S1 
1 0 1 0 1 0 1 S1 S2 
1 1 0 1 1 0 0 S2 S1 
0 0 1 0 0 0 1 S1 S2 
0 1 0 1 0 0 0 S2 S1 
1 0 1 0 1 0 1 S1 S2 
1 1 0 1 1 0 0 S2 S1 
0 0 1 0 0 0 1 S1 S2 
0 1 0 1 0 0 0 S2 S1 

 

 

Figure.2. The Signal Constellation for An 8 PSK (Phase-Shift Keyed) Code. 

Next we transmit the eight possible encoder outputs (Yn 
= 0-7) as signals over our noisy communications channel 
(perhaps a microwave signal to a satellite) using the signal 
constellation shown in Figure. Typically this is done using 
phase-shift keying (PSK) with each signal position 
corresponding to a different phase shift in the transmitted 
carrier signal. 

B. The Received Signal 

        The noisy signal enters the receiver. It is now our task to 
discover which of the eight possible signals were transmitted 
at each time step. First we calculate the distance of each 

received signal from each of the known eight positions in the 
signal constellation. Table.3 shows the distances between 
signals in the 8PSK constellation. We are going to assume 
that there is no noise in the channel to illustrate the operation 
of the Viterbi decoder, so that the distances in Table.III 
represent the possible distance measures of our received 
signal from the 8PSK signals. 
        The distances, X, in the first column of Table.III are the 
geometric or algebraic distances. We measure the Euclidean 
distance, E = X2 shown as B (the binary quantized value of E) 
in Table.3. The rounding errors that result from conversion to 
fixed-width binary are quantization errors and are important 
in any practical implementation of the Viterbi decoder. The 
effect of the quantization error is to add a form of noise to the 
received signal. 

The viterbi_distances module models the receiver 
section that digitizes the noisy analog received signal and 
computes the binary distance measures. Eight binary-distance 
measures, in0-in7, are generated each time a signal is 
received. Since each of the distance measures is 3 bits wide, 
there are a total of 24 bits that form the digital inputs to the 
Viterbi decoder. 

 

C. Module viterbi_distances  

 This module simulates the front end of a receiver. 
Normally the received analog signal (with noise) is converted 
into a series of distance measures from the known eight 
possible transmitted PSK signals: s0,...,s7. We are not 
simulating the analog part or noise in this version, so we just 
take the digitally encoded 3-bit signal, Y, from the encoder 
and convert it directly to the distance measures. d[N] is the 
distance from signal = N to signal = 0 d[N] = 
(2*sin(N*PI/8))**2 in 3-bit binary (on the scale 2=100) 
Example: d[3] = 1.85**2 = 3.41 = 110 in N is the distance 
from signal = N to encoder signal. Example: in3 is the 
distance from signal = 3 to encoder signal. d[N] is the 
distance from signal = N to encoder signal = 0. If encoder 
signal = J, shift the distances by 8-J positions. Example: if 
signal = 2, in0 is d[6], in1 is D[7], in2 is D[0], etc.  
As an example, Table IV shows the distance measures for the 
transmitted encoder output sequence Yn = 1, 0, 5, 4, ... 
(repeated) corresponding to an encoder input of Xn = 0, 1, 2, 
3, ... (repeated). 

 
 

TABLE III.  REPRESENTATION OF THE POSSIBLE DISTANCE MEASURES OF OUR RECEIVED SIGNAL FROM THE 8PSK SIGNALS  
 

Signal 
Algebraic 

distance from 
signal 0 

X = Distance 
from signal 0 

Euclidean 
distance 
E = X2 

B = binary quantized 
value of E 

D = decimal 
value of B 

Quantization 
error 

Q = D - 1.75 E 
0 2 sin (0 π / 8) 0.00 0.00 000 0 0 
1 2 sin (1 π / 8) 0.77 0.59 001 1 -0.0325 
2 2 sin (2 π / 8) 1.41 2.00 100 4 0.5 
3 2 sin (3 π / 8) 1.85 3.41 110 6 0.0325 
4 2 sin (4 π / 8) 2.00 4.00 111 7 0 
5 2 sin (5 π / 8) 1.85 3.41 110 6 0.0325 
6 2 sin (6 π / 8) 1.41 2.00 100 4 0.5 
7 2 sin (7 π / 8) 0.77 0.59 001 1 -0.0325 
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TABLE IV.  RECEIVER DISTANCE MEASURESFOR AN EXAMPLE TRANSMISSION SEQUENCE 

Input Xn Output Yn Present state Next state in0 in1 in2 in3 in4 in5 in6 in7 
3 x S? S? x x x x x x x x 
3 6 S0 S1 4 6 7 6 4 1 0 1 
0 1 S1 S2 1 0 1 4 6 7 6 4 
1 0 S2 S1 0 1 4 6 7 6 4 1 
2 5 S1 S2 6 7 6 4 1 0 1 4 
3 4 S2 S1 7 6 4 1 0 1 4 6 
0 1 S1 S2 1 0 1 4 6 7 6 4 
1 0 S2 S1 0 1 4 6 7 6 4 1 
2 5 S1 S2 6 7 6 4 1 0 1 4 
3 4 S2 S1 7 6 4 1 0 1 4 6 
0 1 S1 S2 1 0 1 4 6 7 6 4 
1 0 S2 S1 0 1 4 6 7 6 4 1 

 

III. TESTING THE SYSTEM 

Here is a testbench for the entire system: encoder, 
receiver front end, and decoder: 

 
Figure.3. Block diagram of the entire system 

 

A. Module viterbi_test   

 This is the top-level module, viterbi_test, that models 
the communications link. It contains three modules: 
viterbi_encode, viterbi_distances, and viterbi. There is no 
analog and no noise in this version. The 2-bit message, X, is 
encoded to a 3-bit signal, Y. In this module the message X is 
generated using a simple counter. The digital 3-bit signal Y is 
transmitted, received with noise as an analog signal (not 
modeled here), and converted to a set of eight 3-bit distance 
measures, in0, ..., in7. The distance measures form the input 
to the Viterbi decoder that reconstructs the transmitted signal 
Y, with an error signal if the measures are inconsistent(CDD 
= counter input, digital transmission, digital reception). The 
Viterbi decoder takes the distance measures and calculates 
the most likely transmitted signal. It does this by keeping a 
running history of the previously received signals in a path 
memory. The path-memory length of this decoder is 12. By 
keeping a history of possible sequences and using the 
knowledge that the signals were generated by a state 
machine, it is possible to select the most likely sequences. 

 
Figure.4. Simulator output from the testbench (displayed using Xilinx ISE). 

 
     The system input or message, X[1:0] , is driven by a 
counter that repeats the sequence 0, 1, 2, 3, ... incrementing 
by 1 at each positive clock edge (with a delay of one time 
unit), starting with X equal to 3 at t = 0. The active-high reset 
signal, Res, is asserted. The encoder output, Y [2:0], changes 
after the first positive clock edge following the deassertion of 
the reset. The encoder output sequence is 2, 5, 4, 1, 0…. and 
then the sequence 5, 4, 1, 0... repeats. This encoder output 
sequence is then imagined to be transmitted and received. 
The receiver module calculates the distance measures and 
passes them to the decoder. The transmitted sequence appears 
at the output, out [2:0], with 2, 5, 4, 1, 0... exactly the same as 
the encoder output. 

IV. INTERNAL BLOCKS OF DECODER 

A. Verilog Decoder Model 

The Viterbi decoder model presented in this section is 
written for simulation. The Viterbi decoder makes extensive 
use of vector D flip-flops (registers).  

B. A D flip-flop module 

We use this model by defining a parameter that 
specifies the bus width as follows: 

dff #(3) subout0(in0, sub0, clk, reset); 
 The code is not flexible, because bit widths are fixed 

rather than using parameters. A model with parameters for 
rate, signal constellation, distance measure resolution, and 
path memory length is considerably more complex. 
 Verilog code for a Viterbi decoder. The decoder 
assumes a rate 2/3 encoder, 8 PSK modulation, and trellis 
coding. The viterbi module contains eight submodules: 
subset_decode, metric, compute_metric, compare_select, 
reduce, pathin, path_memory, and output_decision. 
 The decoder accepts eight 3-bit measures of ||r-si||**2 
and, after an initial delay of thirteen clock cycles, the output 
is the best estimate of the signal transmitted. The distance 
measures are the Euclidean distances between the received 
signal r (with noise) and each of the (in this case eight) 
possible transmitted signals s0 to s7. 
 This is the top level of the Viterbi decoder. The eight 
input signals {in0,...,in7} represent the distance measures, ||r-
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si||**2. The other input signals are clk and reset. The output 
signals are out and error. 

C. Module subset_decode                                

 This module chooses the signal corresponding to the 
smallest of each set {||r-s0||**2,||r-s4||**2}, {||r-s1||**2, ||r-
s5||**2}, {||r-s2||**2,||r-s6||**2}, {||r-s3||**2,||r-s7||**2}. 
Therefore there are eight input signals and four output signals 
for the distance measures. The signals sout0, sout3 are used 
to control the path memory. The statement dff #(3) 
instantiates a vector array of 3 D flip-flops.  

D. Module compute_metric                             

 This module computes the sum of path memory and the 
distance for each path entering a state of the trellis. For the 
four states, there are two paths entering it; therefore eight 
sums are computed in this module. The path metrics and 
output sums are 5 bits wide. The output sum is bounded and 
should never be greater than 5 bits for a valid input signal. 
The overflow from the sum is the error output and indicates 
an invalid input signal. 

E. Module compare_select                             

 This module compares the summations from the 
compute_metric module and selects the metric and path with 
the lowest value. The output of this module is saved as the 
new path metric for each state. The ACS output signals are 
used to control the path memory of the decoder. 

F. Module path                                       

 This is the basic unit for the path memory of the Viterbi 
decoder. It consists of four 3-bit D flip-flops in parallel. 
There is a 2:1 mux at each D flip-flop input. The statement 
dff #(12) instantiates a vector array of 12 flip-flops. 

G. Module path_memory 

 This module consists of an array of memory elements 
(D flip-flops) that store and shift the path memory as new 
signals are added to the four paths (or four most likely 
sequences of signals). These module instantiates 11 instances 
of the path module. 

H. Module pathin                                    

 This module determines the input signal to the path for 
each of the four paths. Control signals from the subset 

decoder and compare select modules are used to store the 
correct signal. The statement dff #(12) instantiates a vector 
array of 12 flip-flops. 

I. Module metric                                     

 The registers created in this module (using D flip-flops) 
store the four path metrics. Each register is 5 bits wide. The 
statement dff #(5) instantiates a vector array of 5 flip-flops. 

J. Module output_decision                            

 This module decides the output signal based on the path 
that corresponds to the smallest metric. The control signal 
comes from the reduce module. 

K. Module reduce                                    

 This module reduces the metrics after the addition and 
compare operations. This algorithm selects the smallest 
metric and subtracts it from all the other metrics.  

V.  CONCLUSION 

 In this paper, a Viterbi algorithm based on the strongly 
connected trellis decoding of binary convolutional codes has 
been presented. The use of error-correcting codes has proven 
to be an effective way to overcome data corruption in digital 
communication channels. The Viterbi decoder is modeled 
using Verilog, and Simulated by Xilinx ISE .We can 
implement a higher performance Viterbi decoder with such 
an algorithm. So in the future, with this algorithm with larger 
code rates we can get better results. 
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